Manipulation of molecular transport into mesoporous silica thin films by the infiltration of polyelectrolytes.
نویسندگان
چکیده
The design of hybrid mesoporous materials incorporating polymeric assemblies as versatile functional units has become a very fertile research area offering major opportunities for controlling molecular transport through interfaces. However, the creation of such functional materials depends critically on our ability to assemble polymeric units in a predictable manner within mesopores with dimensions comparable to the size of the macromolecular blocks themselves. In this work, we describe for the first time the manipulation of the molecular transport properties of mesoporous silica thin films by the direct infiltration of polyelectrolytes into the inner environment of the 3D porous framework. The hybrid architectures were built up through the infiltration-electrostatic assembly of polyallylamine (PAH) on the mesopore silica walls, and the resulting systems were studied by a combination of experimental techniques including ellipso-porosimetry, cyclic voltammetry and X-ray photoelectron spectroscopy, among others. Our results show that the infiltration-assembly of PAH alters the intrinsic cation-permselective properties of mesoporous silica films, rendering them ion-permeable mesochannels and enabling the unrestricted diffusion of cationic and anionic species through the hybrid interfacial architecture. Contrary to what happens during the electrostatic assembly of PAH on planar silica films (quantitative charge reversal), the surface charge of the mesoporous walls is completely neutralized upon assembling the cationic PAH layer (i.e., no charge reversal occurs). We consider this work to have profound implications not only on the molecular design of multifunctional mesoporous thin films but also on understanding the predominant role of nanoconfinement effects in dictating the functional properties of polymer-inorganic hybrid nanomaterials.
منابع مشابه
Evaporation Induced Self-Assembly Method for Mesoporous Silica Thin Films Synthesis: Mechanism, Affecting Parameters and Capabilities
This article has no abstract.
متن کاملNANO EXPRESS Structure and Luminescence Properties of Eu-Doped Cubic Mesoporous Silica Thin Films
Eu ions-doped cubic mesoporous silica thin films with a thickness of about 205 nm were prepared on silicon and glass substrates using triblock copolymer as a structure-directing agent using sol–gel spin-coating and calcination processes. X-ray diffraction and transmission electron microscopy analysis show that the mesoporous silica thin films have a highly ordered body-centered cubic mesoporous...
متن کاملStructure and Luminescence Properties of Eu3+-Doped Cubic Mesoporous Silica Thin Films
Eu3+ ions-doped cubic mesoporous silica thin films with a thickness of about 205 nm were prepared on silicon and glass substrates using triblock copolymer as a structure-directing agent using sol-gel spin-coating and calcination processes. X-ray diffraction and transmission electron microscopy analysis show that the mesoporous silica thin films have a highly ordered body-centered cubic mesoporo...
متن کاملConvective self-assembly to deposit supported ultra-thin mesoporous silica films
For practical consideration in applying mesoporous films for sensors, it is ideal to fabricate thinner films to achieve fast transport and therefore rapid response. Here we report a new, facile method to deposit mesoporous silica films with thickness less than 100 nm through combining convective self-assembly and surfactant/silica self-assembly. Through an interfacial capillarity defined in the...
متن کاملCharge transport under illumination in mesoporous continuous films
Recent developments in the preparation of surfactant-templated mesostructured sol-gel silica materials have extended the morphology from the originally discovered powders, with particle sizes on the order of microns, to mesoporous continuous thin films. These films could find applications in membrane-based separations, selective catalysis and sensors. Particularly, sodium dodecyl sulfate (SDS)t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 27 8 شماره
صفحات -
تاریخ انتشار 2011